
An Evaluation of 

Distributed Concurrency 

Control
Paper authored by Rachael Harding et al.

Presented by Uzair Inamdar



What We’ll Cover

1. Introduction

2. Protocols Being Tested

3. Test and Architectural Overview

4. Tests

i. Contention

ii. Update Rate

iii. Multi-Partition Transactions

iv. Scalability

v. Network Speed

5. Points to Consider

6. Conclusion

2/25



Introduction

 Evaluation of performance of protocols across various 
tests.

 Rise of Distributed Database Management Systems (DBMS)

 Data Partitioning

 Serializability

 Deneva

• Deployed on Amazon EC2 with 8 virtualized CPU cores and 32 GB of 
memory

3/25



Protocols Being Tested

1. Two Phase Lock (2PL)

a) NO_WAIT

b) WAIT_DIE

2. Timestamp Ordering

a) TIMESTAMP

b) Multi-Version Concurrency Control (MVCC)

3. Optimistic Concurrency Control (OCC)

4. Deterministic (CALVIN)

4/25



Tests Overview

 Only serializable executions are analyzed.

 Online Transaction Processing are done through thread-safe sockets 

over TCP/IP.

 The queries are executed by 4 threads in a non-blocking manner 

unless a shared resource is being worked on.

 No logging, checkpoint, and recovery.

 Table partitions are preloaded on servers.

 Each server will carry 10,000 open client connection.

 When a transaction aborts, it restarts after a penalized period.

5/25



Architectural Overview

➢ Each server can host more than one partition, but each 

partition exists only on one server.

➢ Does not provide replication or fault tolerance.

6/25



TESTS

7/25



Contention

8/25



1. Contention

 CALVIN is initially bottlenecked because of thee single threaded schedulers, 

but it is the only protocol to maintain good performance despite high skew.

 This is because locks are released much quicker once the read data is made 

available.

 OCC performs badly under low contention due to the overheads of copy and 

validation even when chances of modifications are the least.

 However, at higher levels the benefit of tolerating more conflicts and thus 

avoiding unnecessary aborts outweighs these overheads.

 The rest have a steep drop because of excessive wait times caused by data 

locks.

9/25



Update Rate

10/25



2. Update Rate
 As the update% goes up, WAIT_DIE drops drastically and more transaction get 

queued into wait state as hot records are locked by various transactions.

 These transactions waste a lot of resource because they non-deterministically 

bypass the queues and prolong the natural flow of transactions. Even after all 

this waiting, they grow old and are aborted.

 NO_WAIT on the other hand is not affected because there is no waiting. The 

transactions abort straight away if the lock is not available.

 TIMESTAMP and MVCC suffer from the wait time caused by locks that are held 

by active transactions.

 OCC suffers from lower rates initially due to unnecessary validation checks, 

but at higher update% it is relatively faster as locks are not acquired.

 CALVIN's advantage and disadvantage from contention carry over to update 

rates.

11/25



Multi-Partition Transactions

12/25



3. Multi-Partition Transactions

 Pretty much all protocols plummet equally except CALVIN.

 Part of the reason is because CALVIN does not make use of 

2 Phase Commit protocol (2PC).

 There is also the overhead caused by multiple requests 

and responses between different server messages.

 CALVIN on the other hand synchronizes its schedulers 

every 5ms and hence the transactions are automatically 

forwarded to the target partitions.

13/25



4. Scalability

14/25



A) Read-only Workload

15/25



Time % Graph

T
im

e
 %

16/25



B) Read-Write (Medium Contention)

17/25



Time % Graph
T
im

e
 %

18/25



C) Read-Write (High Contention)

19/25



Time % Graph
T
im

e
 %

20/25



5. Network Speed

 Protocols that use 2PC strategy experienced the most loss in 
throughput as the commits required delivery of transactional 
messages. 

 CALVIN does not need to exchange any messages between 
servers between its read and write phase. Hence, it performs 
the best.

 WAIT_DIE sees the worst performance as not only are the 
messages being lagged, the lagging is causing a lot of the 
waiting transactions to age and abort. The high abort rate in 
the main reason for the significant loss in performance.

 TIMESTAMP and MVCC also suffer loss in performance because of 
delay in transactional messages, but don't suffer as bad a rate 
for aborts.

21/25



Network Speed

22



Points to Consider

 Effect of platform constraints on protocols

• Number of requests allowed

• The back-off penalty

• Number of Servers/Partitions

• Type of Transactions

 Testing on Transaction Processing Performance Council -

Type C (TPC-C)

23/25



Conclusion

 2PL performs poorly under high contention due to aborts.

 Timestamp-ordered concurrency control does not perform well under 

high contention due to buffering.

 Optimistic concurrency control has validation overhead.

 Deterministic protocol maintains performance across a range of 

adverse load and data skew but has limited performance due to 

transaction scheduling.

 There exists a serious scalability problem, especially when the 

partitions do not exist in a single data center.

 Possible Solution

24/25



Thank You

25/25


